Accurate estimation of influenza epidemics using Google search data via ARGO.
نویسندگان
چکیده
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.
منابع مشابه
Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data
BACKGROUND Accurate forecasting of seasonal influenza epidemics is of great concern to healthcare providers in temperate climates, as these epidemics vary substantially in their size, timing and duration from year to year, making it a challenge to deliver timely and proportionate responses. Previous studies have shown that Bayesian estimation techniques can accurately predict when an influenza ...
متن کاملForecasting Peaks of Seasonal Influenza Epidemics Œ PLOS Currents Outbreaks
We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google ...
متن کاملUsing clinicians' search query data to monitor influenza epidemics.
Search query information from a clinician's database, UpToDate, is shown to predict influenza epidemics in the United States in a timely manner. Our results show that digital disease surveillance tools based on experts' databases may be able to provide an alternative, reliable, and stable signal for accurate predictions of influenza outbreaks.
متن کاملNowcasting economic and social data: when and why search engine data fails, an illustration using Google Flu Trends
Obtaining an accurate picture of the current state of the economy is particularly important to central banks and finance ministries, and of epidemics to health ministries. There is increasing interest in the use of search engine data to provide such ’nowcasts’ of social and economic indicators. However, people may search for a phrase because they independently want the information, or they may ...
متن کاملUsing electronic health records and Internet search information for accurate influenza forecasting
BACKGROUND Accurate influenza activity forecasting helps public health officials prepare and allocate resources for unusual influenza activity. Traditional flu surveillance systems, such as the Centers for Disease Control and Prevention's (CDC) influenza-like illnesses reports, lag behind real-time by one to 2 weeks, whereas information contained in cloud-based electronic health records (EHR) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 47 شماره
صفحات -
تاریخ انتشار 2015